
 

Quality Control Charts 
  

 
General Purpose  

In all production processes, we need to monitor the extent to which our products meet 
specifications. In the most general terms, there are two "enemies" of product quality: 
(1) deviations from target specifications, and (2) excessive variability around target 
specifications. During the earlier stages of developing the production process, 
designed experiments are often used to optimize these two quality characteristics (see 
Experimental Design); the methods provided in Quality Control are on-line or in-
process quality control procedures to monitor an on-going production process. For 
detailed descriptions of these charts and extensive annotated examples, see Buffa 
(1972), Duncan (1974) Grant and Leavenworth (1980), Juran (1962), Juran and Gryna 
(1970), Montgomery (1985, 1991), Shirland (1993), or Vaughn (1974). Two recent 
excellent introductory texts with a "how-to" approach are Hart & Hart (1989) and 
Pyzdek (1989); two recent German language texts on this subject are Rinne and 
Mittag (1995) and Mittag (1993).  

 
 

General Approach  

The general approach to on-line quality control is straightforward: We simply extract 
samples of a certain size from the ongoing production process. We then produce line 
charts of the variability in those samples, and consider their closeness to target 
specifications. If a trend emerges in those lines, or if samples fall outside pre-
specified limits, then we declare the process to be out of control and take action to 
find the cause of the problem. These types of charts are sometimes also referred to as 
Shewhart control charts (named after W. A. Shewhart who is generally credited as 
being the first to introduce these methods; see Shewhart, 1931).  

Interpreting the chart. The most standard display actually contains two charts (and 
two histograms); one is called an X-bar chart, the other is called an R chart.  

Histograms, 2D. 2D histograms (the term was first used by Pearson, 1895) 
present a graphical representation (see below) of the frequency distribution of the 
selected variable(s) in which the columns are drawn over the class intervals and the 
heights of the columns are proportional to the class frequencies. 
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In both line charts, the horizontal axis represents the different samples; the vertical 
axis for the X-bar chart represents the means for the characteristic of interest; the 
vertical axis for the R chart represents the ranges. For example, suppose we wanted to 
control the diameter of piston rings that we are producing. The center line in the X-bar 
chart would represent the desired standard size (e.g., diameter in millimeters) of the 
rings, while the center line in the R chart would represent the acceptable (within-
specification) range of the rings within samples; thus, this latter chart is a chart of the 
variability of the process (the larger the variability, the larger the range). In addition to 
the center line, a typical chart includes two additional horizontal lines to represent the 
upper and lower control limits (UCL, LCL, respectively); we will return to those lines 
shortly. Typically, the individual points in the chart, representing the samples, are 
connected by a line. If this line moves outside the upper or lower control limits or 
exhibits systematic patterns across consecutive samples (see Runs Tests), then a 
quality problem may potentially exist.  

 
 

Establishing Control Limits  

Even though one could arbitrarily determine when to declare a process out of control 
(that is, outside the UCL-LCL range), it is common practice to apply statistical 
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principles to do so. Elementary Concepts discusses the concept of the sampling 
distribution, and the characteristics of the normal distribution. The method for 
constructing the upper and lower control limits is a straightforward application of the 
principles described there.  

Example. Suppose we want to control the mean of a variable, such as the size of 
piston rings. Under the assumption that the mean (and variance) of the process does 
not change, the successive sample means will be distributed normally around the 
actual mean. Moreover, without going into details regarding the derivation of this 
formula, we also know (because of the central limit theorem, and thus approximate 
normal distribution of the means; see, for example, Hoyer and Ellis, 1996) that the 
distribution of sample means will have a standard deviation of Sigma (the standard 
deviation of individual data points or measurements) over the square root of n (the 
sample size). It follows that approximately 95% of the sample means will fall within 
the limits ± 1.96 * Sigma/Square Root(n) (refer to Elementary Concepts for a 
discussion of the characteristics of the normal distribution and the central limit 
theorem). In practice, it is common to replace the 1.96 with 3 (so that the interval will 
include approximately 99% of the sample means), and to define the upper and lower 
control limits as plus and minus 3 sigma limits, respectively.  

General case. The general principle for establishing control limits just described 
applies to all control charts. After deciding on the characteristic we want to control, 
for example, the standard deviation, we estimate the expected variability of the 
respective characteristic in samples of the size we are about to take. Those estimates 
are then used to establish the control limits on the chart.  

 
 

Common Types of Charts  

The types of charts are often classified according to the type of quality characteristic 
that they are supposed to monitor: there are quality control charts for variables and 
control charts for attributes. Specifically, the following charts are commonly 
constructed for controlling variables:  

• X-bar chart. In this chart the sample means are plotted in order to control the 
mean value of a variable (e.g., size of piston rings, strength of materials, etc.).  

• R chart. In this chart, the sample ranges are plotted in order to control the 
variability of a variable.  

• S chart. In this chart, the sample standard deviations are plotted in order to 
control the variability of a variable.  

• S**2 chart. In this chart, the sample variances are plotted in order to control 
the variability of a variable.  

For controlling quality characteristics that represent attributes of the product, the 
following charts are commonly constructed:  

• C chart. In this chart (see example below), we plot the number of defectives 
(per batch, per day, per machine, per 100 feet of pipe, etc.). This chart assumes 
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that defects of the quality attribute are rare, and the control limits in this chart 
are computed based on the Poisson distribution (distribution of rare events).  

 

• U chart. In this chart we plot the rate of defectives, that is, the number of 
defectives divided by the number of units inspected (the n; e.g., feet of pipe, 
number of batches). Unlike the C chart, this chart does not require a constant 
number of units, and it can be used, for example, when the batches (samples) 
are of different sizes.  

• Np chart. In this chart, we plot the number of defectives (per batch, per day, 
per machine) as in the C chart. However, the control limits in this chart are not 
based on the distribution of rare events, but rather on the binomial distribution. 
Therefore, this chart should be used if the occurrence of defectives is not rare 
(e.g., they occur in more than 5% of the units inspected). For example, we 
may use this chart to control the number of units produced with minor flaws.  

• P chart. In this chart, we plot the percent of defectives (per batch, per day, per 
machine, etc.) as in the U chart. However, the control limits in this chart are 
not based on the distribution of rare events but rather on the binomial 
distribution (of proportions). Therefore, this chart is most applicable to 
situations where the occurrence of defectives is not rare (e.g., we expect the 
percent of defectives to be more than 5% of the total number of units 
produced).  

All of these charts can be adapted for short production runs (short run charts), and for 
multiple process streams.  
 
 

Short Run Charts  

The short run control chart, or control chart for short production runs, plots 
observations of variables or attributes for multiple parts on the same chart. Short run 
control charts were developed to address the requirement that several dozen 
measurements of a process must be collected before control limits are calculated. 
Meeting this requirement is often difficult for operations that produce a limited 
number of a particular part during a production run.  
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For example, a paper mill may produce only three or four (huge) rolls of a particular 
kind of paper (i.e., part) and then shift production to another kind of paper. But if 
variables, such as paper thickness, or attributes, such as blemishes, are monitored for 
several dozen rolls of paper of, say, a dozen different kinds, control limits for 
thickness and blemishes could be calculated for the transformed (within the short 
production run) variable values of interest. Specifically, these transformations will 
rescale the variable values of interest such that they are of compatible magnitudes 
across the different short production runs (or parts). The control limits computed for 
those transformed values could then be applied in monitoring thickness, and 
blemishes, regardless of the types of paper (parts) being produced. Statistical process 
control procedures could be used to determine if the production process is in control, 
to monitor continuing production, and to establish procedures for continuous quality 
improvement.  

For additional discussions of short run charts refer to Bothe (1988), Johnson (1987), 
or Montgomery (1991).  

Short Run Charts for Variables  

Nominal chart, target chart. There are several different types of short run charts. 
The most basic are the nominal short run chart, and the target short run chart. In these 
charts, the measurements for each part are transformed by subtracting a part-specific 
constant. These constants can either be the nominal values for the respective parts 
(nominal short run chart), or they can be target values computed from the (historical) 
means for each part (Target X-bar and R chart). For example, the diameters of piston 
bores for different engine blocks produced in a factory can only be meaningfully 
compared (for determining the consistency of bore sizes) if the mean differences 
between bore diameters for different sized engines are first removed. The nominal or 
target short run chart makes such comparisons possible. Note that for the nominal or 
target chart it is assumed that the variability across parts is identical, so that control 
limits based on a common estimate of the process sigma are applicable.  

Standardized short run chart. If the variability of the process for different parts 
cannot be assumed to be identical, then a further transformation is necessary before 
the sample means for different parts can be plotted in the same chart. Specifically, in 
the standardized short run chart the plot points are further transformed by dividing the 
deviations of sample means from part means (or nominal or target values for parts) by 
part-specific constants that are proportional to the variability for the respective parts. 
For example, for the short run X-bar and R chart, the plot points (that are shown in the 
X-bar chart) are computed by first subtracting from each sample mean a part specific 
constant (e.g., the respective part mean, or nominal value for the respective part), and 
then dividing the difference by another constant, for example, by the average range 
for the respective chart. These transformations will result in comparable scales for the 
sample means for different parts.  

Short Run Charts for Attributes  

For attribute control charts (C, U, Np, or P charts), the estimate of the variability of 
the process (proportion, rate, etc.) is a function of the process average (average 
proportion, rate, etc.; for example, the standard deviation of a proportion p is equal to 
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the square root of p*(1- p)/n). Hence, only standardized short run charts are available 
for attributes. For example, in the short run P chart, the plot points are computed by 
first subtracting from the respective sample p values the average part p's, and then 
dividing by the standard deviation of the average p's.  

 
 

Unequal Sample Sizes  

When the samples plotted in the control chart are not of equal size, then the control 
limits around the center line (target specification) cannot be represented by a straight 
line. For example, to return to the formula Sigma/Square Root(n) presented earlier for 
computing control limits for the X-bar chart, it is obvious that unequal n's will lead to 
different control limits for different sample sizes. There are three ways of dealing with 
this situation.  

Average sample size. If one wants to maintain the straight-line control limits (e.g., to 
make the chart easier to read and easier to use in presentations), then one can compute 
the average n per sample across all samples, and establish the control limits based on 
the average sample size. This procedure is not "exact," however, as long as the sample 
sizes are reasonably similar to each other, this procedure is quite adequate.  

Variable control limits. Alternatively, one may compute different control limits for 
each sample, based on the respective sample sizes. This procedure will lead to 
variable control limits, and result in step-chart like control lines in the plot. This 
procedure ensures that the correct control limits are computed for each sample. 
However, one loses the simplicity of straight-line control limits.  

Stabilized (normalized) chart. The best of two worlds (straight line control limits 
that are accurate) can be accomplished by standardizing the quantity to be controlled 
(mean, proportion, etc.) according to units of sigma. The control limits can then be 
expressed in straight lines, while the location of the sample points in the plot depend 
not only on the characteristic to be controlled, but also on the respective sample n's. 
The disadvantage of this procedure is that the values on the vertical (Y) axis in the 
control chart are in terms of sigma rather than the original units of measurement, and 
therefore, those numbers cannot be taken at face value (e.g., a sample with a value of 
3 is 3 times sigma away from specifications; in order to express the value of this 
sample in terms of the original units of measurement, we need to perform some 
computations to convert this number back).  

 
 

Control Charts for Variables vs. Charts for Attributes  

Sometimes, the quality control engineer has a choice between variable control charts 
and attribute control charts.  
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Advantages of attribute control charts. Attribute control charts have the advantage 
of allowing for quick summaries of various aspects of the quality of a product, that is, 
the engineer may simply classify products as acceptable or unacceptable, based on 
various quality criteria. Thus, attribute charts sometimes bypass the need for 
expensive, precise devices and time-consuming measurement procedures. Also, this 
type of chart tends to be more easily understood by managers unfamiliar with quality 
control procedures; therefore, it may provide more persuasive (to management) 
evidence of quality problems.  

Advantages of variable control charts. Variable control charts are more sensitive 
than attribute control charts (see Montgomery, 1985, p. 203). Therefore, variable 
control charts may alert us to quality problems before any actual "unacceptables" (as 
detected by the attribute chart) will occur. Montgomery (1985) calls the variable 
control charts leading indicators of trouble that will sound an alarm before the 
number of rejects (scrap) increases in the production process.  

Control Chart for Individual Observations  

Variable control charts can by constructed for individual observations taken from the 
production line, rather than samples of observations. This is sometimes necessary 
when testing samples of multiple observations would be too expensive, inconvenient, 
or impossible. For example, the number of customer complaints or product returns 
may only be available on a monthly basis; yet, one would like to chart those numbers 
to detect quality problems. Another common application of these charts occurs in 
cases when automated testing devices inspect every single unit that is produced. In 
that case, one is often primarily interested in detecting small shifts in the product 
quality (for example, gradual deterioration of quality due to machine wear). The 
CUSUM, MA, and EWMA charts of cumulative sums and weighted averages 
discussed below may be most applicable in those situations.  

 
 

Out-Of-Control Process: Runs Tests  

As mentioned earlier in the introduction, when a sample point (e.g., mean in an X-bar 
chart) falls outside the control lines, one has reason to believe that the process may no 
longer be in control. In addition, one should look for systematic patterns of points 
(e.g., means) across samples, because such patterns may indicate that the process 
average has shifted. These tests are also sometimes referred to as AT&T runs rules 
(see AT&T, 1959) or tests for special causes (e.g., see Nelson, 1984, 1985; Grant and 
Leavenworth, 1980; Shirland, 1993). The term special or assignable causes as 
opposed to chance or common causes was used by Shewhart to distinguish between a 
process that is in control, with variation due to random (chance) causes only, from a 
process that is out of control, with variation that is due to some non-chance or special 
(assignable) factors (cf. Montgomery, 1991, p. 102).  

As the sigma control limits discussed earlier, the runs rules are based on "statistical" 
reasoning. For example, the probability of any sample mean in an X-bar control chart 
falling above the center line is equal to 0.5, provided (1) that the process is in control 



(i.e., that the center line value is equal to the population mean), (2) that consecutive 
sample means are independent (i.e., not auto-correlated), and (3) that the distribution 
of means follows the normal distribution. Simply stated, under those conditions there 
is a 50-50 chance that a mean will fall above or below the center line. Thus, the 
probability that two consecutive means will fall above the center line is equal to 0.5 
times 0.5 = 0.25.  

Accordingly, the probability that 9 consecutive samples (or a run of 9 samples) will 
fall on the same side of the center line is equal to 0.5**9 = .00195. Note that this is 
approximately the probability with which a sample mean can be expected to fall 
outside the 3- times sigma limits (given the normal distribution, and a process in 
control). Therefore, one could look for 9 consecutive sample means on the same side 
of the center line as another indication of an out-of-control condition. Refer to Duncan 
(1974) for details concerning the "statistical" interpretation of the other (more 
complex) tests.  

Zone A, B, C. Customarily, to define the runs tests, the area above and below the 
chart center line is divided into three "zones."  

 

By default, Zone A is defined as the area between 2 and 3 times sigma above and 
below the center line; Zone B is defined as the area between 1 and 2 times sigma, and 
Zone C is defined as the area between the center line and 1 times sigma.  

9 points in Zone C or beyond (on one side of central line). If this test is positive 
(i.e., if this pattern is detected), then the process average has probably changed. Note 
that it is assumed that the distribution of the respective quality characteristic in the 
plot is symmetrical around the mean. This is, for example, not the case for R charts, S 
charts, or most attribute charts. However, this is still a useful test to alert the quality 
control engineer to potential shifts in the process. For example, successive samples 
with less-than-average variability may be worth investigating, since they may provide 
hints on how to decrease the variation in the process.  

6 points in a row steadily increasing or decreasing. This test signals a drift in the 
process average. Often, such drift can be the result of tool wear, deteriorating 
maintenance, improvement in skill, etc. (Nelson, 1985).  



14 points in a row alternating up and down. If this test is positive, it indicates that 
two systematically alternating causes are producing different results. For example, 
one may be using two alternating suppliers, or monitor the quality for two different 
(alternating) shifts.  

2 out of 3 points in a row in Zone A or beyond. This test provides an "early 
warning" of a process shift. Note that the probability of a false-positive (test is 
positive but process is in control) for this test in X-bar charts is approximately 2%.  

4 out of 5 points in a row in Zone B or beyond. Like the previous test, this test may 
be considered to be an "early warning indicator" of a potential process shift. The 
false- positive error rate for this test is also about 2%.  

15 points in a row in Zone C (above and below the center line). This test indicates 
a smaller variability than is expected (based on the current control limits).  

8 points in a row in Zone B, A, or beyond, on either side of the center line 
(without points in Zone C). This test indicates that different samples are affected by 
different factors, resulting in a bimodal distribution of means. This may happen, for 
example, if different samples in an X-bar chart where produced by one of two 
different machines, where one produces above average parts, and the other below 
average parts.  

 
 

Operating Characteristic (OC) Curves  

A common supplementary plot to standard quality control charts is the so-called 
operating characteristic or OC curve (see example below). One question that comes 
to mind when using standard variable or attribute charts is how sensitive is the current 
quality control procedure? Put in more specific terms, how likely is it that you will not 
find a sample (e.g., mean in an X-bar chart) outside the control limits (i.e., accept the 
production process as "in control"), when, in fact, it has shifted by a certain amount? 
This probability is usually referred to as the (beta) error probability, that is, the 
probability of erroneously accepting a process (mean, mean proportion, mean rate 
defectives, etc.) as being "in control." Note that operating characteristic curves pertain 
to the false-acceptance probability using the sample-outside-of- control-limits 
criterion only, and not the runs tests described earlier.  



 

Operating characteristic curves are extremely useful for exploring the power of our 
quality control procedure. The actual decision concerning sample sizes should depend 
not only on the cost of implementing the plan (e.g., cost per item sampled), but also 
on the costs resulting from not detecting quality problems. The OC curve allows the 
engineer to estimate the probabilities of not detecting shifts of certain sizes in the 
production quality.  

Process Capability Indices  

For variable control charts, it is often desired to include so-called process capability 
indices in the summary graph. In short, process capability indices express (as a ratio) 
the proportion of parts or items produced by the current process that fall within user-
specified limits (e.g., engineering tolerances).  

For example, the so-called Cp index is computed as:  

Cp = (USL-LSL)/(6*sigma)  

where sigma is the estimated process standard deviation, and USL and LSL are the 
upper and lower specification (engineering) limits, respectively. If the distribution of 
the respective quality characteristic or variable (e.g., size of piston rings) is normal, 
and the process is perfectly centered (i.e., the mean is equal to the design center), then 
this index can be interpreted as the proportion of the range of the standard normal 
curve (the process width) that falls within the engineering specification limits. If the 
process is not centered, an adjusted index Cpk is used instead. For a "capable" process, 
the Cp index should be greater than 1, that is, the specification limits would be larger 
than 6 times the sigma limits, so that over 99% of all items or parts produced could be 
expected to fall inside the acceptable engineering specifications. For a detailed 
discussion of this and other indices, refer to Process Analysis.  

 
 

Other Specialized Control Charts  

The types of control charts mentioned so far are the "workhorses" of quality control, 
and they are probably the most widely used methods. However, with the advent of 
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inexpensive desktop computing, procedures requiring more computational effort have 
become increasingly popular.  

X-bar Charts For Non-Normal Data. The control limits for standard X-bar charts 
are constructed based on the assumption that the sample means are approximately 
normally distributed. Thus, the underlying individual observations do not have to be 
normally distributed, since, as the sample size increases, the distribution of the means 
will become approximately normal (i.e., see discussion of the central limit theorem in 
the Elementary Concepts; however, note that for R, SΈ and S**2 charts, it is assumed 
that the individual observations are normally distributed). Shewhart (1931) in his 
original work experimented with various non-normal distributions for individual 
observations, and evaluated the resulting distributions of means for samples of size 
four. He concluded that, indeed, the standard normal distribution-based control limits 
for the means are appropriate, as long as the underlying distribution of observations 
are approximately normal. (See also Hoyer and Ellis, 1996, for an introduction and 
discussion of the distributional assumptions for quality control charting.)  

However, as Ryan (1989) points out, when the distribution of observations is highly 
skewed and the sample sizes are small, then the resulting standard control limits may 
produce a large number of false alarms (increased alpha error rate), as well as a larger 
number of false negative ("process-is-in-control") readings (increased beta-error rate). 
You can compute control limits (as well as process capability indices) for X-bar 
charts based on so-called Johnson curves(Johnson, 1949), which allow to approximate 
the skewness and kurtosis for a large range of non-normal distributions (see also 
Fitting Distributions by Moments, in Process Analysis). These non- normal X-bar 
charts are useful when the distribution of means across the samples is clearly skewed, 
or otherwise non-normal.  

Hotelling T**2 Chart. When there are multiple related quality characteristics 
(recorded in several variables), we can produce a simultaneous plot (see example 
below) for all means based on Hotelling multivariate T**2 statistic (first proposed by 
Hotelling, 1947).  

 

Cumulative Sum (CUSUM) Chart. The CUSUM chart was first introduced by Page 
(1954); the mathematical principles involved in its construction are discussed in Ewan 
(1963), Johnson (1961), and Johnson and Leone (1962).  
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If one plots the cumulative sum of deviations of successive sample means from a 
target specification, even minor, permanent shifts in the process mean will eventually 
lead to a sizable cumulative sum of deviations. Thus, this chart is particularly well-
suited for detecting such small permanent shifts that may go undetected when using 
the X-bar chart. For example, if, due to machine wear, a process slowly "slides" out of 
control to produce results above target specifications, this plot would show a steadily 
increasing (or decreasing) cumulative sum of deviations from specification.  

To establish control limits in such plots, Barnhard (1959) proposed the so-called V- 
mask, which is plotted after the last sample (on the right). The V-mask can be thought 
of as the upper and lower control limits for the cumulative sums. However, rather than 
being parallel to the center line; these lines converge at a particular angle to the right, 
producing the appearance of a V rotated on its side. If the line representing the 
cumulative sum crosses either one of the two lines, the process is out of control.  

Moving Average (MA) Chart. To return to the piston ring example, suppose we are 
mostly interested in detecting small trends across successive sample means. For 
example, we may be particularly concerned about machine wear, leading to a slow but 
constant deterioration of quality (i.e., deviation from specification). The CUSUM 
chart described above is one way to monitor such trends, and to detect small 
permanent shifts in the process average. Another way is to use some weighting 
scheme that summarizes the means of several successive samples; moving such a 
weighted mean across the samples will produce a moving average chart (as shown in 
the following graph).  



 

Exponentially-weighted Moving Average (EWMA) Chart. The idea of moving 
averages of successive (adjacent) samples can be generalized. In principle, in order to 
detect a trend we need to weight successive samples to form a moving average; 
however, instead of a simple arithmetic moving average, we could compute a 
geometric moving average (this chart (see graph below) is also called Geometric 
Moving Average chart, see Montgomery, 1985, 1991).  

 

Specifically, we could compute each data point for the plot as:  

zt = *x-bart + (1- )*zt-1  

In this formula, each point zt is computed as (lambda) times the respective mean x-
bart, plus one minus times the previous (computed) point in the plot. The parameter 

(lambda) here should assume values greater than 0 and less than 1. Without going 
into detail (see Montgomery, 1985, p. 239), this method of averaging specifies that 
the weight of historically "old" sample means decreases geometrically as one 
continues to draw samples. The interpretation of this chart is much like that of the 
moving average chart, and it allows us to detect small shifts in the means, and, 
therefore, in the quality of the production process.  

Regression Control Charts. Sometimes we want to monitor the relationship between 
two aspects of our production process. For example, a post office may want to 



monitor the number of worker-hours that are spent to process a certain amount of 
mail. These two variables should roughly be linearly correlated with each other, and 
the relationship can probably be described in terms of the well-known Pearson 
product-moment correlation coefficient r. This statistic is also described in Basic 
Statistics. The regression control chart contains a regression line that summarizes the 
linear relationship between the two variables of interest. The individual data points 
are also shown in the same graph. Around the regression line we establish a 
confidence interval within which we would expect a certain proportion (e.g., 95%) of 
samples to fall. Outliers in this plot may indicate samples where, for some reason, the 
common relationship between the two variables of interest does not hold.  

 

Applications. There are many useful applications for the regression control chart. For 
example, professional auditors may use this chart to identify retail outlets with a 
greater than expected number of cash transactions given the overall volume of sales, 
or grocery stores with a greater than expected number of coupons redeemed, given the 
total sales. In both instances, outliers in the regression control charts (e.g., too many 
cash transactions; too many coupons redeemed) may deserve closer scrutiny.  

Pareto Chart Analysis. Quality problems are rarely spread evenly across the 
different aspects of the production process or different plants. Rather, a few "bad 
apples" often account for the majority of problems. This principle has come to be 
known as the Pareto principle, which basically states that quality losses are mal-
distributed in such a way that a small percentage of possible causes are responsible for 
the majority of the quality problems. For example, a relatively small number of 
"dirty" cars are probably responsible for the majority of air pollution; the majority of 
losses in most companies result from the failure of only one or two products. To 
illustrate the "bad apples", one plots the Pareto chart,  

http://www.statsoft.com/textbook/stbasic.html�
http://www.statsoft.com/textbook/stbasic.html�
http://www.statsoft.com/textbook/stbasic.html�
http://www.statsoft.com/textbook/glosp.html#Pareto Distribution�


 

which simply amounts to a histogram showing the distribution of the quality loss 
(e.g., dollar loss) across some meaningful categories; usually, the categories are sorted 
into descending order of importance (frequency, dollar amounts, etc.). Very often, this 
chart provides useful guidance as to where to direct quality improvement efforts.  
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